VACOFLUX 48

COMPOSITION (in wt%)

49 Co – 49 Fe – 2 V IEC 60404-8-6 F11 ASTM A801-09 Alloy Type 1

PRODUCT DESCRIPTION

The high purity CoFe alloy VACOFLUX® 48 is signified by low coercive field strength, high permeabilities and low magnetization losses $p_{\rm Fa}$.

Supplied as thin strips it is considered the fully optimized solution for low-loss laminated stacks made of cobalt iron. Combined with its high magnetic saturation VACOFLUX 48 is ideally suited for applications where size and weight reductions are of paramount importance such as aviation, spacecraft applications, or motor racing.

MAIN PROPERTIES

- Saturation polarization of $J_s = 2.30 \text{ T}$
- Low specific iron losses
- Low coercivity $H_c \sim 35$ A/m
- Max. permeability $\mu_{max} \sim 21,000$

Stators produced as VACSTACK® from VACOFLUX 48 strip material

TYPICAL APPLICATIONS

Motors and generators with high power density and lowest losses, special transformers with low losses at high flux densities

FORMS OF SUPPLY

- Strip material, thickness 0.05 1 mm, width 120 – 280 mm
- Stamped parts, laminations, and laminated assemblies

Other dimensions and tolerances upon request

STRIP MATERIAL 0.35 mm - TYPICAL VALUES

PHYSICAL PROPERTIES	Unit					
Mass density p	g/cm ³	8.12				
Thermal conductivity (25 °C) λ	W/(m ⋅ K)	33				
Thermal expansion coefficient (20 – 100 °C) α	10 ⁻⁶ /K	9.7				
Electrical resistivity $\rho_{\rm e}$	μΩm	0.42				
STATIC MAGNETIC PROPERTIES						
Coercivity H _c	A/m	35				
Saturation polarization J_s	Т	2.30				
Saturation magnetization B_s at H = 40 kA/m	Т	2.35				
Maximum permeability μ_{max}		21,000				
Magnetostriction constant λ_s	ppm	+70				
Curie temperature T_c	°C	950				
SPECIFIC IRON LOSSES OF STRIP MATERIAL		STRIP THICKNESS				
AFTER FINAL HEAT TREATMENT		0.05 mm	0.10 mm	0.20 mm	0.35 mm	
р _{го} 1.5 Т 50 Hz	W/kg	1.0	1.0	1.2	1.5	
р _{га} 1.5 Т 400 Hz	W/kg	9.3	11	17	30	
р _{Ее} 1.5 Т 1,000 Hz	W/kg	28	38	69	145	
p _{Fe} 2.0 T 50 Hz	W/kg	1.7	1.7	1.8	2.2	
p _{Fe} 2.0 T 400 Hz	W/kg	16	19	30	58	
p _{Fe} 2.0 T 1,000 Hz	W/kg	48	69	138	335	
MECHANICAL PROPERTIES (final annealed)						
Young's modulus E	GPa	200				
Yield strength R _{p 0.2}	MPa	190				
Tensile strength R _m	MPa	220				
Elongation A	%	2				
Hardness	HV	180				
MECHANICAL PROPERTIES (cold rolled)						
Yield strength R _{p 0.2}	MPa	1,230				
Tensile strength R _m	MPa	1,300				
Elongation A	%		1			
Hardness	HV	380				
RECOMMENDED PARAMETERS FOR THE						
FINAL HEAT TREATMENT						
Atmosphere		hydrogen				
Temperature	°C	880				
Annealing time	h	10				
Cooling rate	K/h	100 – 200				

Published by VACUUMSCHMELZE GmbH & Co. KG, Hanau, July 2022 © VACUUMSCHMELZE GmbH & Co. KG 2021. All rights reserved. ® is a Registered Trademark of VACUUMSCHMELZE GmbH & Co. KG

ADVANCED MAGNETIC SOLUTIONS