Specification

Item no.: T60404-N4646-X921

K-No.: 26621

300mA Differential Current Sensor for 5V Supply Voltage

For the electronic measurement of current: DC, AC, pulsed..., with galvanic isolation between the primary and the secondary circuit

Customer: Standard type

Date: 28.06.2021

Description

- Closed loop (compensation)
- Current Sensor with magnetic probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- excellent accuracy
- very low offset current
- very low temperature dependency and offset drift
- very low hysteresis of offset current
- short response time
- wide frequency bandwidth
- compact design
- reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:
- Solar inverter

Description

- Current Sensor with magnetic probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- excellent accuracy
- very low offset current
- very low temperature dependency and offset drift
- very low hysteresis of offset current
- short response time
- wide frequency bandwidth
- compact design
- reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:
- Solar inverter

Electrical data - Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{PN}</td>
<td>A</td>
<td>Primary nominal RMS current</td>
</tr>
<tr>
<td>I_{DN}</td>
<td>A</td>
<td>Differential rated RMS current</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>V</td>
<td>Output voltage @ I_{AP}</td>
</tr>
<tr>
<td>V_{OUT}(0)</td>
<td>V</td>
<td>Output voltage @ I_P=0A, θ_A=25°C</td>
</tr>
<tr>
<td>V_{OUT}(Error)</td>
<td>V</td>
<td>Internal reference voltage</td>
</tr>
<tr>
<td>V_{REF}</td>
<td>V</td>
<td>External reference voltage range</td>
</tr>
<tr>
<td>K_{N}</td>
<td></td>
<td>Transformation ratio</td>
</tr>
</tbody>
</table>

1) with switching on and after “test current” the sensor is degaussed by an internal AC-current for about 110ms. In this time the output is set to V_{OUT} < 0.5V.
2) If VREF is set external to 0..0.1V an internal test current is generated.

Accuracy – Dynamic performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{AP,max}</td>
<td>A</td>
<td>Max. measuring range (differential current)</td>
</tr>
<tr>
<td>X</td>
<td>%</td>
<td>Accuracy @ I_{AN}, θ_A = 25°C</td>
</tr>
<tr>
<td>εL</td>
<td>%</td>
<td>Linearity</td>
</tr>
<tr>
<td>V_{O} (V_{OUT}-V_{REF})</td>
<td>mV</td>
<td>Offset voltage @ I_P = 0A, θ_A = 25°C</td>
</tr>
<tr>
<td>ΔV_{O}/ΔT</td>
<td>mV/°C</td>
<td>Temperature drift of V_{OUT} @ I_P=0A, θ_A</td>
</tr>
<tr>
<td>t_r</td>
<td>μs</td>
<td>Response time @ 90% of I_{DN}</td>
</tr>
<tr>
<td>f_{BW}</td>
<td>kHz</td>
<td>Frequency bandwidth</td>
</tr>
</tbody>
</table>

General data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_A</td>
<td>°C</td>
<td>Ambient operation temperature</td>
</tr>
<tr>
<td>θ_S</td>
<td>°C</td>
<td>Ambient storage temperature (acc. to M3101)</td>
</tr>
<tr>
<td>m</td>
<td>g</td>
<td>Mass</td>
</tr>
<tr>
<td>V_C</td>
<td>V</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>I_C</td>
<td>mA</td>
<td>Supply current at I_P = 0A and RT</td>
</tr>
</tbody>
</table>

1) Cleared and manufactured and tested in accordance with IEC 61800-5-1:2007 Reinforced Insulation, Pollution degree 2, Overvoltage category III, Insulation material group I

Date

28.06.2021

Name

DJ

Issue

81

Amendment

Further standards: UL 508, file E317483, category NMTR2 / NMTR8. And add UL sign to mechanical dimension and marking info box in datasheet. CN-21-221

Hrg.: R&D-PD NPI D

Bearb.: DJ

MC-PM: NSch.

check

freig.: SB

Released
Specification

Item no.: T60404-N4646-X921

K-No.: 26621

300mA Differential Current Sensor for 5V Supply Voltage

For the electronic measurement of current:
DC, AC, pulsed ..., with galvanic isolation between the primary and the secondary circuit

Date: 28.06.2021

Customer: Standard type

Customers Part no:

Page 2 of 4

Mechanical outline (mm):

General tolerances DIN ISO 2768-c

Connections:
Pin 5-10: 0.7mm x 0.7mm
Pin 1-4: Ø2.8mm

Marking:
UL-sign
4646-X921
F DC

Connections:
- Pin 5-10: 0.7mm x 0.7mm
- Pin 1-4: Ø2.8mm

Schematic diagram:

- Int_REF
- 470
- 10k
- 42.4k
- OUT
- 470
- 22nF
- 40k
- GND

Hrg.: R&D-PD NPI D
Bearb.: DJ
designer

MC PM: NSch.
check

freig.: SB
released

VACUUMSCHMELZE

Mechanical outline (mm):

General tolerances DIN ISO 2768-c

Connections:
Pin 5-10: 0.7mm x 0.7mm
Pin 1-4: Ø2.8mm

Marking:
UL-sign
4646-X921
F DC

Connections:
- Pin 5-10: 0.7mm x 0.7mm
- Pin 1-4: Ø2.8mm

Schematic diagram:
Specification

Item no.: T60404-N4646-X921

K-No.: 26621

300mA Differential Current Sensor for 5V Supply Voltage

For the electronic measurement of current: DC, AC, pulsed ..., with galvanic isolation between the primary and the secondary circuit

<table>
<thead>
<tr>
<th>Customer: Standard type</th>
<th>Customers Part no:</th>
<th>Page 3 of 4</th>
</tr>
</thead>
</table>

Date: 28.06.2021

Electrical data:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{C,\text{max}})</td>
<td>maximum supply voltage (without function)</td>
<td>6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_C)</td>
<td>Supply current with primary current</td>
<td>15mA + (I_{0})</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{OUT,SC}})</td>
<td>Short circuit output current</td>
<td>(\pm10)</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(R_S)</td>
<td>Secondary coil resistance @ (\theta_s = 85°C)</td>
<td>(80)</td>
<td>(\Omega)</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{Test}})</td>
<td>Test winding resistance @ (\theta_s = 25°C)</td>
<td>(0.9)</td>
<td>(\Omega)</td>
<td></td>
</tr>
<tr>
<td>(R_{P1,P2})</td>
<td>Primary wire resistance @ (\theta_s = 25°C)</td>
<td>(0.24)</td>
<td>(\Omega)</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{REF}})</td>
<td>Internal resistance of reference input</td>
<td>(470)</td>
<td>(\Omega)</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{OUT}})</td>
<td>Output resistance of (V_{\text{OUT}})</td>
<td>(470)</td>
<td>(\Omega)</td>
<td></td>
</tr>
<tr>
<td>(\Delta X/\Delta \theta)</td>
<td>Temperature drift of (X) @ (\theta_s = -40°C ... 85°C)</td>
<td>(400)</td>
<td>ppm/K</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{\text{REF}}/\Delta \theta)</td>
<td>Temperature drift of (V_{\text{REF}}) @ (\theta_s = -40°C ... 85°C)</td>
<td>(5)</td>
<td>50 ppm/K</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{\text{O}}/\Delta V_C)</td>
<td>Sum of any offset drift including:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{\text{O}})</td>
<td>Long term drift of (V_0)</td>
<td>(12)</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{\text{O}})</td>
<td>Temperature drift of (V_0) @ (\theta_s = -40°C ... 85°C)</td>
<td>(10)</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{\text{O}}/\Delta V_C)</td>
<td>Supply voltage rejection ratio</td>
<td>(10)</td>
<td>mV/V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CH}})</td>
<td>Hysteresis of (V_{\text{OUT}}) @ (\theta_s = 0) (after an overload of 1000x (I_{\text{0}}))</td>
<td>(75)</td>
<td>125</td>
<td>mV</td>
</tr>
<tr>
<td>(V_{\text{CH},\text{Demag}})</td>
<td>Hysteresis after Degaussing</td>
<td></td>
<td>25</td>
<td>mV</td>
</tr>
<tr>
<td>(V_{\text{OSS}})</td>
<td>Offsetripple (without external filter)</td>
<td>(70)</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OSS}})</td>
<td>Offsetripple (with 20 kHz-Filter, first order)</td>
<td>(20)</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OSS}})</td>
<td>Offsetripple (with 1 kHz-Filter, first order)</td>
<td>(6)</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OSS}})</td>
<td>Mechanical stress according to M3209/3</td>
<td></td>
<td>1.5</td>
<td>g</td>
</tr>
<tr>
<td>(V_{\text{OSS}})</td>
<td>Settings: 10-2000Hz, 1min/Octave, 2 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Routine Tests:

(Measurement after temperature balance of the samples at room temperature, SC=significant characteristic)

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{OUT}}) (SC) (100%)</td>
<td>Output voltage vs. reference</td>
<td>(729) ... (751) mV</td>
</tr>
<tr>
<td>(V_0) (100%)</td>
<td>Offset voltage ((V_{\text{OUT}}-V_{\text{REF}}))</td>
<td>(\pm25) mV</td>
</tr>
<tr>
<td>(V_{\text{OUT(test current)}}) (100%)</td>
<td>Output voltage @ (V_{\text{REF}} = 0V)</td>
<td>(250) ± (60) mV</td>
</tr>
<tr>
<td>(U_{d}) (100%)</td>
<td>Test voltage, 1s, Pin 1-4 vs. Pin 5-10</td>
<td>(1.8) kV RMS</td>
</tr>
<tr>
<td>(U_{PD})</td>
<td>Partial discharge voltage (extinction)</td>
<td>(1.5) kV RMS</td>
</tr>
</tbody>
</table>

Type Tests:

(Precondition acc. to M3236)

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_{W})</td>
<td>Impulse test (1.2µs/50µs wave form)</td>
<td>(6) kV</td>
</tr>
<tr>
<td>(U_{W}), prim-prim</td>
<td>Impulse test (1.2µs/50µs wave form)</td>
<td>(6) kV</td>
</tr>
<tr>
<td>(U_{d})</td>
<td>Test voltage, 60s</td>
<td>(3.6) kV RMS</td>
</tr>
<tr>
<td>(U_{d}), prim-prim</td>
<td>Test voltage between primary conductors, 60s</td>
<td>(3.6) kV RMS</td>
</tr>
<tr>
<td>(U_{PD})</td>
<td>Partial discharge voltage (extinction)</td>
<td>(1.5) kV RMS</td>
</tr>
</tbody>
</table>

Other instructions

- Current direction: A positive output voltage appears at point \(V_{\text{OUT}} \), if primary current flows in direction of the arrow.
- Temperature of the primary conductor should not exceed 105°C.
- Housing and bobbin material UL-listed: Flammability class 94V-0.
- Further standards: UL 508, file E317483, category NMTR2 / NMTR8

* IEC 61800-5-1:2007

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden.

Any offenders are liable to pay all relevant damages.
300mA Differential Current Sensor for 5V Supply Voltage
For the electronic measurement of current: DC, AC, pulsed ..., with galvanic isolation between the primary and the secondary circuit

Date: 28.06.2021

Customer: Standard type

Customer Part no:

Specification

Item no.: T60404-N4646-X921

K-No.: 26621

300mA Differential Current Sensor for 5V Supply Voltage
For the electronic measurement of current: DC, AC, pulsed ..., with galvanic isolation between the primary and the secondary circuit

Explanation of several terms used in the tables:

- **V₀**: Long term drift of V₀ after 100 temperature cycles in the range -40°C to 85°C.
- **tᵣ**: Response time, measured as a delay time at I₀P = 0.9 * I₀N between a rectangular primary current and the output current or voltage.
- **tᵣa**: Reaction time, measured as a delay time at I₀P = 0.1 * I₀N between a rectangular primary current and the output current or voltage.
- **X₁₀₀(I₀N)**: The sum of all possible errors over the temperature range by measuring a current I₀N:
 \[X₁₀₀(I₀N) = 100 \times \left| \frac{V_{OUT}(I₀N)-V_{OUT}(0)}{0.74V} - 1 \right| \%\]
- **X**: Permissible measurement error in the final inspection at RT, defined by
 \[X = 100 \times \left| \frac{V_{OUT}(I₀N)-V_{OUT}(0)}{0.74V} - 1 \right| \%\]
- **ΔX₀**: Linearity fault defined by:
 \[\epsilon_L = 100 \times \left| \frac{I₀P}{I₀N} \right| \%\]
 Where I₀P is any input DC current and V_OUT the corresponding output term. (V₀ = 0).

Application Information

The external test current can be generated with the use of a resistor R and a switch X or something similar (Transistor, Mosfet, etc.). The resistor determine the current at a given voltage and so the output voltage can be calculated.

\[V_{OUT} = V_{REF} \pm \left(\frac{5V}{R + R_{Test}} \cdot 20\right)\frac{I₀N}{I₀N}\]