VACUUM SCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X651

K-no.: 24507

25 A Current Sensor module for 5V-supply voltage

For electronic current measurement:
DC, AC, pulsed, mixed ..., with a galvanic
isolation between primary circuit
(high power) and secondary circuit
(electronic circuit)

Customer: Standard type

Page 1 of 2

Description
• Closed loop (compensation)
 Current Sensor with magnetic
 field probe
• Printed circuit board mounting
• Casing and materials UL-listed

Characteristics
• Excellent accuracy
• Very low offset current
• Very low temperature dependency and offset
 current drift
• Very low hysteresis of offset current
• Short response time
• Wide frequency bandwidth
• Compact design
• Reduced offset ripple

Applications
Mainly used for stationary operation in industrial
applications:
• AC variable speed drives and servo motor
 drives
• Static converters for DC motor drives
• Battery supplied applications
• Switched Mode Power Supplies (SMPS)
• Power Supplies for welding applications
• Uninterruptible Power Supplies (UPS)

Electrical data – Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary nominal r.m.s. current</td>
<td>IPN</td>
<td>25</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage @ IP</td>
<td>Vout</td>
<td>2.5 ± (0.625*IP/IPN)</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage @ IP=0, TA=25 °C</td>
<td>Vout</td>
<td>2.5 ± 0.00625</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference voltage</td>
<td>Vref</td>
<td>2.5 ± 0.005</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turns ratio</td>
<td>KN</td>
<td>1…3 : 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accuracy – Dynamic performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. measuring range</td>
<td>IP,max</td>
<td>±85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy @ IPN, TA= 25 °C</td>
<td>X</td>
<td>0.7</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linearity</td>
<td>εL</td>
<td>0.1</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset voltage @ IP=0, TA= 25 °C</td>
<td>Vout,-2.5V</td>
<td>±6.25</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature drift of Vout @ IP=0, TA= -40…85 °C</td>
<td>ΔVout/2.5V/ΔT</td>
<td>13</td>
<td>26</td>
<td>ppm/K</td>
<td></td>
</tr>
<tr>
<td>Response time @ 90% von IPN</td>
<td>t</td>
<td>300</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay time at di/dt = 100 A/μs</td>
<td>Δt (IP,max)</td>
<td>200</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient operating temperature</td>
<td>TA</td>
<td>-40</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient storage temperature</td>
<td>TS</td>
<td>-40</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>m</td>
<td>12</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>VC</td>
<td>4.75</td>
<td>RMS 5.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>IC0</td>
<td>15</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copy of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden
Any offenders are liable to pay all relevant damages.
SPECIFICATION

Item no.: T60404-N4646-X651

K-no.: 24507

25 A Current Sensor module for 5V-supply voltage

For electronic current measurement:
- DC, AC, pulsed, mixed ..., with a galvanic
 isolation between primary circuit (high power) and secondary circuit (electronic circuit)

General tolerances DIN ISO 2768-c

Tolerances grid distance ±0,2mm

DC = Date Code

F = Factory

Mechanical outline (mm):

Connections:
- 1...6: Ø 1 mm
- 7...9: 0,46"0,46 mm

Marking:

![Marking Diagram]

Schematic diagram

![Schematic Diagram]

Possibilities of wiring (@ T_A = 85°C)

<table>
<thead>
<tr>
<th>primary windings</th>
<th>primary current RMS</th>
<th>primary current maximal</th>
<th>output voltage effective</th>
<th>turns ratio</th>
<th>primary resistance</th>
<th>primary wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_p</td>
<td>I_p [A]</td>
<td>I_p,max [A]</td>
<td>V_out (I_p) [V]</td>
<td>K_N</td>
<td>R_p [mΩ]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25 ±85</td>
<td>2.5±0.625</td>
<td>1:2000</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12 ±42</td>
<td>2.5±0.600</td>
<td>2:2000</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8 ±28</td>
<td>2.5±0.600</td>
<td>3:2000</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional information is obtainable on request.

Temperature of the primary conductor should not exceed 110°C.

This specification is no declaration of warranty acc. BGB §443 dar.
25 A Current Sensor Modul for 5V-supply voltage

For the electronic measurement of currents:
- DC, AC, pulsed, mixed ...
- with a galvanic
- isolation between the primary circuit
 (high power) and the secondary circuit

Electrical Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{Ctot}</td>
<td>7 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_C</td>
<td>15mA +$I_P*K_N+V_{out}/R_L$</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{out,SC}$</td>
<td>+20 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_e</td>
<td>1 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_s</td>
<td>67 Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{in}(V_{out})$</td>
<td>1 Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_L</td>
<td>1 kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_L</td>
<td>500 Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta X_{I}/\Delta T$</td>
<td>40 ppm/K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta V_0 = \Delta (V_{out} - 2.5V)$</td>
<td>Sum of any offset drift including:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{xt}</td>
<td>10 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OT}</td>
<td>1 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>2 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta V_0/\Delta V_C$</td>
<td>Supply voltage rejection ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{oss}</td>
<td>1 mV/V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{oss}</td>
<td>60 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{oss}</td>
<td>5 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>5 pF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inspection (Measurement after temperature balance of the samples at room temperature)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{out}(I=I_{PN}$</td>
<td>625 ± 0.7% mV</td>
</tr>
<tr>
<td>$V_{out}-2.5V (I_P=0)$</td>
<td>± 0.00625 V</td>
</tr>
<tr>
<td>V_a</td>
<td>1.5 kV</td>
</tr>
<tr>
<td>V_e</td>
<td>1400 V</td>
</tr>
</tbody>
</table>

Type Testing (Pin 1 - 6 to Pin 7 - 9)

- Designed according standard EN 50178 with insulation material group 1
- HV transient test according to M3064 (1,2 µs / 50 µs-wave form)
- Testing voltage to M3014
- Partial discharge voltage acc.M3024 (RMS)
- Partial discharge voltage acc. M3024 (RMS)

Applicable documents

Current direction: A positive output current appears at point I_s, by primary current in direction of the arrow.

Enclosures according to IEC529: IP50.

Further standards UL 508, file E317483, category NMTR2 / NMTR8
Additional Information

Item No.: T60404-N4646-X651

K-No.: 24507

25 A Current Sensor Modul for 5V-supply voltage

For the electronic measurement of currents:

- DC, AC, pulsed, mixed ...
- with galvanic isolation between the primary circuit (high power) and the secondary circuit

Customer: Customers Part No.: Page 2 of 2

Explanation of several of the terms used in the tablets (in alphabetical order)

- t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{PN}$ between a rectangular current and the output voltage $V_{OUT}(I_p)$.

- $\Delta t(I_{Pmax})$: Delay time (describe the dynamic performance for the rapid current pulse rate e.g. short circuit current) measured between I_{Pmax} and the output voltage $V_{OUT}(I_{Pmax})$ with a primary current rise of $\frac{dI_P}{dt} \geq 100$ A/µs.

- U_{PD}: Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e.

$$U_{PD} = 2 \cdot V_e / 1,5$$

- V_{var}: Defined voltage is the RMS value of a sinusoidal voltage with peak value of $1.875 \cdot U_{PD}$ required for partial discharge test in IEC 61800-5-1.

$$V_{var} = 1.875 \cdot U_{PD} / \sqrt{2}$$

- V_{sys}: System voltage - RMS value of rated voltage according to IEC 61800-5-1

- V_{work}: Working voltage - voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation.

- V_0: Offset voltage between V_{OUT} and the rated reference voltage of $V_{ref} = 2,5V$.

$$V_0 = V_{OUT}(0) - 2,5V$$

- V_{DH}: Zero variation of V_0 after overloading with a DC of tenfold the rated value.

- V_{DL}: Long term drift of V_0 after 100 temperature cycles in the range -40 bis 85 °C.

- X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \frac{V_{OUT}(I_{PN}) - V_{OUT}(0)}{0.625V} - 1 \ %$$

- $X_{ges}(I_{PN})$: Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

$$X_{ges} = 100 \cdot \frac{V_{OUT}(I_{PN}) - 2.5V}{0.625V} - 1 \ % \ or \ X_{ges} = 100 \cdot \frac{V_{OUT}(I_{PN}) - V_{ref}}{0.625V} - 1 \ %$$

- ε_L: Linearity fault defined by

$$\varepsilon_L = 100 \cdot \left| \frac{I_P - V_{OUT}(I_P) - V_{OUT}(0)}{V_{OUT}(I_{PN}) - V_{OUT}(0)} \right| \ %$$

This "Additional information" is no declaration of warranty according BGB §443.

Hrsg.: KB-E
Bearb.: Le
KB-PM IA: KRe.
Freig.: HS
editor
designer
check
released

Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mitteilung ihres Inhalts
nicht gestattet, soweit nicht ausdrücklich zugestanden. Zweckentfremdung verpflichtet zu
Schadenersatz. Alle Rechte für den Fall der Patenterteilung oder GM-Eintragung vorbehalten.

Copying of this document, disclosing it to third parties or using the contents there for any
purposes without express written authorization by use illegally forbidden.

Any offenders are liable to pay all relevant damages.