Specification

Item no.: T60404-N4647-X460

K-No.: 26657

50A Current Sensor
For the electronic measurement of currents: DC, AC, pulsed, mixed with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 28.08.2017

Customer: Standard type

Description
• Closed loop (compensation)
 Current Sensor with magnetic probe
• Printed circuit board mounting
• Casing and materials UL-listed

Characteristics
• excellent accuracy
• very low offset current
• very low temperature dependency and offset current drift
• very low hysteresis of offset current
• short response time
• wide frequency bandwidth
• compact design
• reduced offset ripple

Applications
Mainly used for stationary operation in industrial applications:
• AC variable speed drives and servo motor drives
• static converters for DC motor drives
• Battery supplied applications
• Switched Mode Power Supplies (SMPS)
• Power supplies for welding applications
• Uninterruptable Power Supplies (UPS)

Electrical data - Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary nominal RMS current</td>
<td>I_{PN}</td>
<td>50 A</td>
<td></td>
</tr>
<tr>
<td>Output voltage @ I_{P}</td>
<td>V_{OUT}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output voltage @ I_{P}=0A, T_{A}=25°C</td>
<td>V_{REF}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>External Reference voltage range</td>
<td>V_{REF}</td>
<td>±0.0025 V</td>
<td></td>
</tr>
<tr>
<td>Internal Reference voltage</td>
<td>2.5 ± 0.005 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformation ratio</td>
<td>K_{N}</td>
<td>1...3 : 1400</td>
<td></td>
</tr>
</tbody>
</table>

Accuracy – Dynamic performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. measuring range</td>
<td>I_{P,max}</td>
<td>±150</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Accuracy @ I_{PN}, T_{A} = 25°C</td>
<td>X</td>
<td>0.7 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linearity</td>
<td>e_{L}</td>
<td>0.1 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset voltage @ I_{P} = 0A, T_{A} = 25°C</td>
<td>V_{OUT}-V_{REF}</td>
<td>±2.5 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature drift of V_{OUT} @ I_{P}=0A, V_{REF}=2.5V, T_{A}</td>
<td>\Delta V_{OUT}/V_{REF}/\Delta T</td>
<td>3 ppm/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response time</td>
<td>t_{r}</td>
<td><1 µs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction time</td>
<td>t_{a}</td>
<td><1 µs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency bandwidth</td>
<td>f_{BW}</td>
<td>DC...100 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient operation temperature</td>
<td>T_{A}</td>
<td>-40 to 85 °C</td>
<td></td>
</tr>
<tr>
<td>Ambient storage temperature (acc. to M3101)</td>
<td>T_{S}</td>
<td>-40 to 85 °C</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>m</td>
<td>15 g</td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>V_{C}</td>
<td>4.75 to 5.25 V</td>
<td></td>
</tr>
<tr>
<td>Supply current at I_{P} = 0A and RT</td>
<td>I_{C}</td>
<td>16 mA</td>
<td></td>
</tr>
</tbody>
</table>

Clearance (component without solder pad) | S_{clear} | 10.2 mm |

Creepage (component without solder pad) | S_{creep} | 10.2 mm |

System voltage *determines impulse voltage acc. table 7 | U_{SYS} | 600 V_{RMS} |

Working voltage *acc. table 10 | U_{WC} | 1000 V_{RMS} |

Rated discharge voltage *acc. table 24 with U_{PD} = U_{AC} * \sqrt{2} | U_{PD} | 1414 V_{PEAK} |

Potential Difference acc. to UL 508 | max. | 600 V_{RMS} |

1) Constructed and manufactured and tested in accordance with IEC 61800-5-1:2007 (primary to secondary)
Reinforced insulation, Insulation material group 1, Pollution degree 2, Overvoltage category III

The current sensor passed the EMI susceptibility tests (vertical and horizontal, one direction) according to the standard 61000-4-3:2010 at 20V/m, 80%AM@1kHz over the frequency range of 80MHz to 1000MHz, level a) with <2% variation of the Vout during the stress.
50A Current Sensor
For the electronic measurement of currents:
DC, AC, pulsed, mixed with a galvanic Isolation
between the primary circuit (high power) and the
secondary circuit (electronic circuit)

Mechanical outline (mm):
General tolerances DIN ISO 2768-c

Connections:
Pin Nr. 1-6: Ø1.5mm
Pin Nr. 7-10: 0.6 x 0.7mm

Marking:
UL
4647-X460
F DC

Schematic diagram:
Specification

Item no.: T60404-N4647-X460

K-No.: 26657

50A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 28.08.2017

Customer: Standard type

Customers Part no: Page 3 of 3

Electrical data: (investigate by a type checking)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{C,\text{tot}}$</td>
<td>maximum supply voltage (without function)</td>
<td>7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_C</td>
<td>Supply Current with primary current</td>
<td>$15mA+I_P\cdot K_N+V_{\text{OUT}}/R_L$</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>$I_{\text{OUT,SC}}$</td>
<td>Short circuit output current</td>
<td>± 20</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>R_P</td>
<td>Resistance per primary winding @ $\vartheta = 25^\circ C$</td>
<td>0.3</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>R_S</td>
<td>Secondary coil resistance @ $\vartheta = 85^\circ C$</td>
<td>30</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>R_{REF}</td>
<td>Internal resistance of Reference output</td>
<td>680</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>R_{OUT}</td>
<td>Output resistance of V_{OUT}</td>
<td>10</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>R_L</td>
<td>External recommended resistance of V_{OUT}</td>
<td>1</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>C_L</td>
<td>External recommended capacitance of V_{OUT}</td>
<td>1</td>
<td>nF</td>
<td></td>
</tr>
<tr>
<td>$X_{\text{Ti/MT}}$</td>
<td>Temperature drift of X @ $\vartheta = -40^\circ C ... 85^\circ C$</td>
<td>40</td>
<td>ppm/K</td>
<td></td>
</tr>
<tr>
<td>$\Delta V_{\text{OUT}} = \Delta (V_{\text{OUT}} - V_{\text{REF}})$</td>
<td>Sum of any offset drift including:</td>
<td>2</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V_{Oi}</td>
<td>Long term drift of V_O</td>
<td>1</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V_{OT}</td>
<td>Temperature drift of V_O @ $\vartheta = -40^\circ C...85^\circ C$</td>
<td>1</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Hysteresis of V_{OUT} at $I_P = 0A$ (caused by $I_P = 10 \times I_P$)</td>
<td>1</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>$\Delta V_{\text{OUT}}/\Delta V_C$</td>
<td>Supply voltage rejection ratio</td>
<td>1</td>
<td>mV/V</td>
<td></td>
</tr>
<tr>
<td>V_{OSS}</td>
<td>Offsetripple (with 1 MHz-Filter, first order)</td>
<td>25</td>
<td>mV PP</td>
<td></td>
</tr>
<tr>
<td>V_{OSS}</td>
<td>Offsetripple (with 100 kHz-Filter, first order)</td>
<td>5</td>
<td>10</td>
<td>mV PP</td>
</tr>
<tr>
<td>V_{OSS}</td>
<td>Offsetripple (with 20 kHz-Filter, first order)</td>
<td>2</td>
<td>4</td>
<td>mV PP</td>
</tr>
<tr>
<td>C_k</td>
<td>Maximum possible coupling capacity (primary - secondary)</td>
<td>5</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Mechanical stress according to M3209/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settings: 10-2000Hz, 1 min/oct., 2 hours</td>
<td>30</td>
<td>g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Routine Tests: (Measurement after temperature balance of the samples at room temperature, SC=significant characteristic)

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OUT} (SC)</td>
<td>Output voltage ($I_P = 3 \times 10A_{\text{PEAK}}$)</td>
<td>$625 \pm 0.7%$ mV</td>
</tr>
<tr>
<td>V_{O}</td>
<td>Offset voltage</td>
<td>± 2.5 mV</td>
</tr>
<tr>
<td>U_d</td>
<td>Test voltage, 1s</td>
<td>1.8 kV RMS</td>
</tr>
<tr>
<td>U_{PDE}</td>
<td>Partial discharge voltage (extinction)</td>
<td>1.5 kV RMS</td>
</tr>
<tr>
<td>$U_{\text{PDE}}*1.875$</td>
<td></td>
<td>1.875 kV RMS</td>
</tr>
</tbody>
</table>

Type testing: (Precondition acc. to M3236)

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{W}</td>
<td>HV transient test 1.2μs / 50μs-Waveform</td>
<td>8 kV</td>
</tr>
<tr>
<td>U_d</td>
<td>Test voltage (5s)</td>
<td>3.6 kV RMS</td>
</tr>
<tr>
<td>U_{PDE}</td>
<td>Partial discharge voltage (extinction)</td>
<td>1.5 kV RMS</td>
</tr>
<tr>
<td>$U_{\text{PDE}}*1.875$</td>
<td></td>
<td>1.875 kV RMS</td>
</tr>
</tbody>
</table>

Other instructions:

- Current direction: A positive output voltage vs. V_{REF} appears at point V_{OUT}, if primary current flows in direction of the arrow.
- Constructed, manufactured and tested in accordance with IEC 61800-5-1:2007.
- Temperature of the primary conductor should not exceed 105°C.
- Housing and bobbin material UL-listed: Flammability class 94V-0.
- Further standards: UL 508, file E317483, category NMTR2 / NMTR8