Specification
Not released for production

Item no.
T60404-P4640-X256

K-no.: K26928/17
1700A Current Sensor for ±24V supply with a transformation ratio of \(K_N = 1:5000 \)
for electric current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 12.03.2020

Customer: Standard type

First articles for Production release

Remarks
First articles have not been produced yet.
In the course of the production and the inspection of first articles minor changes at the data sheet may arise.

Electrical Data – Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary nominal r.m.s. current</td>
<td>(I_{PN})</td>
<td>A</td>
<td>1700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring resistance for (I_{PN, DC}) @ 85°C</td>
<td>(R_M)</td>
<td>Ω</td>
<td>0 ... 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary nominal r.m.s. or DC current</td>
<td>(I_{SN})</td>
<td>mA</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turns ratio</td>
<td>(K_N)</td>
<td></td>
<td>(1): 5000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) for the max. measuring range depending on \(R_u \) please refer to Fig.2
2) first number in brackets represents the count of primary turns guided through the primary opening of the sensor

Accuracy – Dynamic performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>(I_{PN})</td>
<td>A</td>
<td>3400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ (R_u = 1 \ Ω; \ θ_a = 20°C; \ U_C = \pm 24V)</td>
<td></td>
<td></td>
<td>2750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy @ (I_{PN}) for (\theta_a = 25°C)</td>
<td>(X)</td>
<td>%</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature drift of (X) @ (\theta_a = -40 ... + 85°C) (secondary)</td>
<td>(X_{11})</td>
<td>%</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring resistance for (I_{PN})</td>
<td>(R_M)</td>
<td>Ω</td>
<td>0 ... 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset current (secondary)</td>
<td>(I_{SO})</td>
<td>mA</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis current (secondary)</td>
<td>(I_{SCH})</td>
<td>mA</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response time @ 90% of (I_{PN})</td>
<td>(t_r)</td>
<td>µs</td>
<td>< 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay time @ 10% of (I_{PN}) (at (dI/dt = 600A/\mu s))</td>
<td>(\Delta t)</td>
<td>µs</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency bandwidth (small signal)</td>
<td>(f_{BW})</td>
<td>kHz</td>
<td>DC...100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) for \(t_{r, max} \) see Fig. 1 on Page 2, short term currents with high slew rates can be measured above \(t_{r, max} \) (transformer behavior)

General data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient operating temperature</td>
<td>(\theta_a)</td>
<td>°C</td>
<td>-40</td>
<td>+85</td>
<td></td>
</tr>
<tr>
<td>Ambient storage temperature acc. VAC M3101</td>
<td>(\theta_s)</td>
<td>°C</td>
<td>-45</td>
<td>+100</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>(m)</td>
<td>g</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>(U_C)</td>
<td>V</td>
<td>±22.8</td>
<td>±24</td>
<td>±25.2</td>
</tr>
<tr>
<td>Current consumption for (I_p = 0A)</td>
<td>(I_{CO})</td>
<td>mA</td>
<td>±31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption for (I_{PN} = 1500A)</td>
<td>(I_{CN})</td>
<td>mA</td>
<td>270</td>
<td>310</td>
<td>375</td>
</tr>
</tbody>
</table>

1) The temperature of the sensor surface at any position must not exceed 105°C
2) Due to the Class-D final stage used for generating the compensation current, the supply current \(I_{CN}(I_C @ I_P = I_{PN}) \) is lower than \(I_{CO} \).

The specified wide range of the supply current is reasoned by dependence on ambient operating temperature \(\theta_a \) and the value of the resistor \(R_u \) connected to the sensor output.

Clearance distance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance distance</td>
<td>(\delta_{clear})</td>
<td>mm</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creepage distance</td>
<td>(s_{clear})</td>
<td>mm</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System voltage</td>
<td>(U_{sys})</td>
<td>RMS</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working voltage</td>
<td>(U_{sys})</td>
<td>RMS</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated discharge voltage</td>
<td>(U_{PD})</td>
<td>PEAK</td>
<td>1414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Constructed and manufactured and tested in accordance with IEC 61800-5-1:2007 (secondary pins 1, 2 and 3 to primary opening)

Insulation material group 1. Pollution degree 2. Overvoltage category III, altitude ≤ 2000m

Date

Name

Issue

Amendment

Hrsg.: R&D-PD NPI D
Bearb: Ku.
MC-PM: NSch.
freig.: released

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden
Any offenders are liable to pay all relevant damages.
Measurement Range Derating

In addition to the sensor design and construction, following operating parameters have high influence to the measurement range limit \(I_{\text{Pmax}} \): the actual continuous primary current \(I_p \), the burden resistor \(R_M \), the ambient temperature \(\theta_a \), the supply voltage \(\pm U_C \) and the busbar temperature. (following curves are interpolated calculations verified by sample measurements)

Derating depending on primary current \(I_p \):

\[
I_{\text{Pmax}(DC)} = f(I_p) \quad \text{condition: } U_C=\pm 24,0V \quad R_M=1\Omega
\]

Derating depending on connected burden resistor \(R_M \):

\[
I_{\text{Pmax}(DC)} = f(R_M) \quad \text{condition: } U_C=\pm 24,0V \quad I_p=1700A
\]

Dwell Time Limits For Maximum DC Currents (\(I_{\text{Pmax}} \))

<table>
<thead>
<tr>
<th>(\theta_a)</th>
<th>ambient temperature</th>
<th>85</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_M)</td>
<td>burden resistor</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>(I_{\text{Pmax}(DC)})</td>
<td>max. DC primary current</td>
<td>2750</td>
<td>2500</td>
</tr>
<tr>
<td>(t_{\text{dwell}})</td>
<td>Permissible dwell time for (I_{\text{Pmax}(DC)})</td>
<td>< 4</td>
<td>< 6</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings For Continuous Currents

<table>
<thead>
<tr>
<th>(\theta_a)</th>
<th>(\leq 85°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_M)</td>
<td>(\geq 1\Omega)</td>
</tr>
<tr>
<td>(I_p) continuous</td>
<td>(\leq 1800A_{DC})</td>
</tr>
</tbody>
</table>

Tab.1: permissible dwell times for measureable DC peak currents at 85°C without degradation of the sensor expected after higher current loads (\(I_p > I_{\text{PN}} \)) recovery times should be taken into account.

Tab.2: absolute maximum ratings for continuous currents with not to be excluded degradation and without UL-compliance

* Exposure to this absolute maximum conditions for extended periods may degrade device reliability and lifetime. Stresses above these ratings may cause permanent damage. These are stress ratings. Functional operation of the device at these or any other conditions beyond those specified is not supported. This conditions don't comply with UL-Certification.
1700A Current Sensor for ±24V supply with a transformation ratio of $K_N=1:5000$

for electric current measurement:
DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Customer: Standard type

Supply Current Consumption

Fig. 5: supply current consumption ($\pm I_C$) at positive and negative supply voltage over primary current

Background information: “buspumping effect”

For DC and low frequency measurements the output current of the sensor (or so called compensation current) is generated by a class D switching amplifier. The advantages of this technology are low power losses, meaning low self-heating of the sensor what makes a continuous measurement of high primary currents possible. Due to the principal of this technology, for $I_P > +300A$ the negative supply current I_C is getting positive and vice versa for $I_P < -300A$ the positive supply current I_C is getting negative as shown in Fig. 5. This effect reaches a maximum/minimum at a certain primary current depending on the operating temperature and the connected burden resistor R_M. It decreases by an increase of R_M or the operating temperature.

- reverse supply currents of the sensor can be used supply (partially) other loads connected to the same power supply
- sensors in three phase systems, where all sensors are connected to one power supply, the supply currents of the sensors can compensate each other similar to the behaviour of load currents in the star point of a three phase system (vector addition).
1700A Current Sensor

for ±24V supply with a transformation ratio of $K_{N}=1:5000$

for electric current measurement:
DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Noise And Offset Ripple Reduction

The offset ripple and noise can be reduced by an external low pass. The simplest solution is a passive low pass filter of 1st order with

$$f_L = \frac{1}{2\pi \cdot R_M \cdot C_a}$$

In this case the response time is enlarged. It is calculated from:

$$t'_r \geq t_r + 2.5 R_M C_a$$

Connection diagram

Fig. 6: simplified schematic diagram of the sensor
Specification
Not released for production

Item no.: T60404-P4640-X256

K-no.: K26928/17

Date: 12.03.2020

Customer: Standard type

1700A Current Sensor
for ±24V supply with a transformation ratio of $K_N=1:5000$

for electric current measurement:
DC, AC, pulsed, mixed ... with a galvanic isolation between
primary circuit (high power) and secondary circuit (electronic circuit)

Customer: Standard type

Customers Part no.: Page 5 von 8

Mechanical outline (mm):

General tolerance DIN ISO 2768-c

Connector:
JST B03B-XASK-1

Pin Ass

Pin 1: $+U_C$
Pin 2: I_S
Pin 3: $-U_C$

Marking

Explanation: Item number: see Tab.2 (left column)
F = Factory code
DC = Date code (YWW)

Arrow shows positive current direction

VAC Logo UL Logo (will follow)

Datamatrix Code (for further info please refer to the datamatrix code section)

Quiet Zone (white rectangular shape with 1.5mm width around the data area of the code)

Connector Pin description

Example: Sensor with end number X256
Produced in Slovakia in CW38 2018
⇒ Part number: 4640-X256
⇒ Factory code: SK
⇒ Date code: K38

4640-X256
SK K36

Hrsg.: R&D-PD NPI D
Bearb: Ku.
MC-PM: NSch.
Freig.: SB

Editor
Designer
Check

Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mitteilung Ihres Inhalts
nicht gestattet, soweit nicht ausdrücklich zugestanden. Zweckverwendungen verpflichten zu
Schadensersatz. Alle Rechte für den Fall der Patenterteilung oder GM-Eintragung vorbehalten

Copying of this document, disclosing it to third parties or using the contents there for any
purposes without express written authorization by use illegally forbidden.
Any offenders are liable to pay all relevant damages.
Specification
Not released for production

Item no.: T60404-P4640-X256

K-no.: K26928/17

1700A Current Sensor for ±24V supply with a transformation ratio of KN=1:5000
for electric current measurement:
DC, AC, pulsed, mixed ... with a galvanic isolation between
primary circuit (high power) and secondary circuit (electronic circuit)

Date: 12.03.2020

Customer: Standard type
Customers Part no.: Page 6 von 8

Datamatrix Code specification

Code Size:
metrical size: 18mm x 18mm
symbol size: 24 x 24 points
(also with a quite zone around the data area)

Code Content:
Standard: ANSI MH10.8.2

1T“Batch-no.”@1P“Item-no.”@2P“datasheet revision“@6D“datecode“@10V“production site“
1T0001234567@1PT60404-P4640-X256@2P81@6DK36@10VSK

Routine Test
Measurement after temperature balance of the samples at room temperature; SC = significant characteristic

\[\frac{K_1}{N_1} (100\%) M3011/6 \quad \text{Transformation ratio (I}_P=1500A, 40-80 Hz) \quad 1 : 5000 \pm 0.3 \% (SC) \]

\[I_{SO} (100\%) M3226 \quad \text{Offset current} \quad < 0.1 \quad \text{mA} \]

\[U_{P} (100\%) M3014 \quad \text{Test voltage (1s)} \quad 2.2 \quad \text{kV RMS} \]

\[U_{PDE} (AQL 1/S4) \quad \text{Partial discharge voltage (extinction)} \quad 1500 \quad \text{V RMS} \]

\[U_{PD(rms)} \cdot 1.875 \quad * \text{acc. table 24} \quad 2813 \quad \text{V RMS} \]

Type Test
Preconditioning acc. VAC M3236 (Pin 1,3,5 to primary opening)

\[U_W \quad M3064 \quad \text{HV transient test} \quad (1.2\mu s / 50\mu s, 5 pulses \rightarrow \text{polarity +, 5 pulses \rightarrow polarity -}) \quad 12 \quad \text{kV} \]

\[U_P \quad M3014 \quad \text{Test voltage (5s)} \quad 4.4 \quad \text{kV RMS} \]

\[U_{PDE} \quad M3024 \quad \text{Partial discharge voltage (extinction)} \quad 1500 \quad \text{V RMS} \]

\[U_{PD(rms)} \cdot 1.875 \quad * \text{acc. table 24} \quad 2813 \quad \text{V RMS} \]

* IEC61800-5-1:2007

Applicable documents and standards

Constructed, manufactured and tested in accordance with IEC61800-5-1:2007.
Further standards: UL 508; file E317483, category NMTR2 / NMTR8
1700A Current Sensor
for ±24V supply with a transformation ratio of $K_N=1:5000$

for electric current measurement:
DC, AC, pulsed, mixed ..., with a galvanic isolation between
primary circuit (high power) and secondary circuit (electronic circuit)

Item no.: T60404-P4640-X256

Date: 12.03.2020

Customer: Standard type

Customer Part no.: Page 7 von 8

Explanation of the terms used in the datasheet

I_{SN}: Nominal secondary current (secondary current value at I_{PN})

$X_{total}(I_{PN})$: The sum of all possible errors over the temperature range by measuring a current I_{PN}:

$$X_{total} = 100 \cdot \frac{I_S(I_{PN})}{K_N \cdot I_{PN}} - 1$$

X: Permissible measurement error in the final inspection at RT.

I_{LB} is the DC output current for a DC primary current with the same value as the (positive) rated current I_{PN} (with $I_0 = 0$)

$$X = 100 \cdot \frac{I_{LB}}{I_{SN}} - 1$$

X_{Ti}: Temperature drift of the rated value orientated output term.

I_{LB} (cf. Notes on F_1) in a specified temperature range:

I_{LB} is the secondary current at temperature θ_A or θ_B

$$X_{Ti} = 100 \cdot \frac{I_{LB}(\theta_B) - I_{LB}(\theta_A)}{I_{SN}}$$

ϵ_L: Linearity fault where I_S is any input DC and I_{LB} the corresponding output term. ($I_0 = 0$).

$$\epsilon_L = 100 \cdot \frac{I_P}{I_{PN}} - \frac{I_{LB}}{I_{SN}}$$

Offset, hysteresis and drift

I_{SO}: Offset current

I_{SOH}: Hysteresis offset at $I_P=0A$, meaning secondary current after overloading the sensor by a direct current of $3 \cdot I_{PN}$ with $R_M=100\Omega$

I_{OC}: Long term drift of I_S after 100 temperature cycles in the range -40 to 85 °C.

Dynamic properties

$\Delta t(I_{P,max})$: delay time between a rectangular primary current and the output current I_S at $I_P = 0.1 \cdot I_{PN}$

t_r: Response time, measured as a delay time between a rectangular primary current and the output current I_S at $I_P = 0.9 \cdot I_{PN}$

Voltage ratings (according to IEC 61800-5-1:2007)

U_{PD}: Rated discharge voltage (recurring peak voltage separated by the insulation)

U_{rms}: System voltage: RMS value of rated voltage

U_{AC}: Working voltage: RMS voltage which occurs by design in a circuit or across an insulation

U_{ACP}: Working voltage recurring peak voltage acc. IEC 61800-5-1 which occurs by design in a circuit or across insulation.